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Abstract

An analytical approach is proposed to investigate the transient behaviour of a Newtonian, single-phase fluid in
natural laminar convection, in a rectangular open-ended duct. The continuity, momentum and energy equations, with
the classical Boussinesq approximation, are solved using a twofold sine Fourier transform and the Laplace transform.
The unsteady state is due to a step variation of the temperature in the four walls of the duct, which can assume four
different, uniform arbitrary values. Considering hydrodynamically developed flow and uniform wall temperatures
(UWTs), the velocity and temperature of the fluid are given as series containing two spatial co-ordinates and the time.
Some plots show the transient evolution of the velocity and temperature distribution. Then the induced volumetric flow
rate, the exchanged power, the mixing cup temperature, and the average Nusselt number are evaluated, as a function of
time, emphasising the influence of the duct aspect ratio and the irrelevance of the channel height. © 2001 Elsevier

Science Ltd. All rights reserved.

1. Introduction

Free laminar convection in inclined rectangular ducts
open at both ends appears in many practical and in-
dustrial devices and its investigation constitutes a fun-
damental study of heat transfer process in thermal
science. Examples of applications are found in the
cooling of electronic circuit boards and electric trans-
formers, architectural design for building insulation,
solar heating and ventilating passive systems, geother-
mal systems, emergency cooling systems in inherently
safe nuclear reactors [1]. The laminar motion is due to
small fluid velocity and duct hydraulic diameter.

Being a fundamental topic of thermal science, tran-
sient natural convection has been extensively analysed in
the past and even nowadays several papers are published
by many authors, who improve and extend numerical
and analytical solutions in different geometries, with
different boundary and initial conditions.

Unsteady developing laminar free convection
between vertical plates was numerically tackled by
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Kettleborough [2], who considered a step variation in
the wall temperature. Joshi [3] solved numerically the
problem of developing laminar flow along vertical
parallel plates with uniform wall temperature (UWT)
and uniform heat flux. Wang [4] carried out an ana-
lytical approach for fully developed transient flow in
vertical plates with periodic heat input. Analytical so-
lutions were presented by AI-Nimr and El-Shaarawi
[5], using Green’s function method; they estimated the
transient volumetric flow rate, the mixing cup tem-
perature and local Nusselt numbers, for fully devel-
oped flows. Nelson and Wood presented numerical [6]
and analytical [7] solutions for natural convection heat
and mass transfer between parallel plates. More re-
cently, Lee [8] published a combined numerical and
theoretical investigation for parallel plates, solving the
system of balance equations with a finite difference
approximation.

Cylindrical geometry has also been widely studied,
vertical concentric annuli have been considered by Al-
Nimr [9] and the transient equations have been solved
with four different boundary conditions. Al-Shaarawi
and Negm [10] have offered a finite difference solution
for transient conjugate natural convection in vertical
annuli with a step change in the temperature of the outer
surface. Transient natural convection in rectangular
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Nomenclature

a,b  longer and shorter sides of the rectangular
cross-section (m)

Cp fluid specific heat (J kg™ K™)

D hydraulic diameter of the duct, 2ab/(a+b) (m)

F dimensionless volumetric flow rate, defined in
Eq. (25)

F' volumetric flow rate (m? s')

F, asymptotic dimensionless volumetric flow rate

F dimensionless volumetric flow rate, F/F,,

g gravitational acceleration (m s~2)

Gr Grashof number

h convective heat transfer coefficient (W/m? K)

H duct length (m)

k fluid thermal conductivity (W/m K)

L dimensionless duct length

Nu average Nusselt number
)4 pressure of the fluid in the duct (Pa)

Do fluid pressure at the channel entrance (Pa)
Ds hydrostatic pressure in the ambient (Pa)
P dimensionless pressure

Pr Prandtl number

(0] dimensionless heat flow rate transferred

between the walls and the fluid

o heat flow rate transferred between the walls
and the fluid (W)

Ra Rayleigh number, PrGr

Re Reynolds number, WD/v

t time (s)

Ty ambient and initial (fluid and wall)
temperature (K)

Ty average wall temperature (K)

u(-)  axial fluid velocity (m s7})

U(-) dimensionless fluid velocity

x,y,z dimensionless rectangular Cartesian
co-ordinates

Greek symbols

o aspect ratio, b/a< 1

p coefficient of thermal expansion (K™')
v kinematic viscosity (m? s7!)

0 fluid density at temperature T (kg m™)
0 dimensionless temperature

T dimensionless time

&, n,{ Cartesian co-ordinates (m)

Subscripts
b mixing cup (or bulk)
w wall

channels constitutes a very arduous problem because of
the geometrical complexity, which requires the intro-
duction of one additional co-ordinate, with respect to
the problem for parallel plates or concentric annuli.
Laminar natural convection in open vertical rectangu-
lar ducts has recently been investigated by Lee [11], but
only in steady state, using the axial vorticity function
to solve numerically the energy and mass balance
equations, with UWT or uniform heat flux boundary
conditions.

The lack of analytical or numerical solutions for
transient hydrodynamically developed laminar natural
convection in rectangular ducts motivated this work.
Hydrodynamically developed flow occurs in the channel
if the Rayleigh number is low or when the height to
diameter ratio H/D is sufficiently large (as in many
practical applications). Laminar flow occurs when the
temperature differences are small, so the surface normal
velocity can be ignored.

Aim of this paper is the analytical solution, in closed
form, for transient hydrodynamically developed laminar
natural convection in vertical open channels of rec-
tangular cross-section with four isothermal walls at four
different temperatures.

The results constitute an original development in the
field of thermal science and could provide a new tool for
applications in several engineering problems.

2. Theoretical model

As usual in natural convection problems, a New-
tonian single-phase fluid is considered and the Bous-
sinesq approximation is assumed (neglecting density
variation in the inertial terms of the balance equation
and retaining it only in the buoyancy term of the motion
equation). The fluid is in continuum laminar internal
flow in an open rectangular channel; viscous dissipation,
radiative heat transfer, axial conduction, and internal
heat generation are absent. Fluid properties, except
density in the buoyancy term, are constant. The Car-
tesian system of co-ordinates &, 5, { has its origin in the
left bottom of the rectangular cross-section (¢ and # in
the cross-section, { perpendicular to the cross-section).

The initial condition states that the fluid is stagnant
in the channel, with uniform initial temperature 7j, the
walls have the same ambient temperature 7;. Suddenly,
at time ¢ = 0, the four walls, independently, undergo a
step change in their temperature. If the walls are par-
tially heated and cooled, the fluid flows upward near the
hot walls, downward near the cold walls, as typical in
natural convection. Even if no axial mass and heat flow
rates occur, the fluid presents 2D velocity and tem-
perature distributions.

Introducing the hypothesis of hydrodynamically de-
veloped flow, the axial velocity profile remains invariant
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with  respect to the longitudinal co-ordinate
{ (0u/0f =0), and its distribution depends on the
transverse co-ordinates £, 5 and time ¢. For the ambient
fluid the hydrostatic law states that Op,/0( = tp,g,
where the plus and minus signs are for downward
(cooling) and upward (heating) flows, respectively.
Based on the above assumptions, the equations of con-
tinuity, momentum and energy can be described by the
two simultaneous dimensionless boundary-layer equa-
tions:

ia_Uf()_La_P_i_ “ ’ 62_U+62_U (1)
Prot Gr 0z 1+« a9 )’

90 Ra_ 00 a \>/o% %0
a*%Ua—(Ha) (a**@) @)

The dimensionless independent variables (co-ordinates
and time) are:

x=2 (0<x<), y="1 (0<y<a),

¢ 4kt (3)
z O T="%3>
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where the Grashof number is
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2
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The dimensionless dependent variables (pressure,
velocity and temperature) are:

D,
pov?’ ~"Grv

T-T

OZTW—TO‘ (5)

P = (.p_ps)

The initial and boundary conditions (no-slip conditions)
for the fluid velocity are:
U(‘x7y7 0) = U(07y’ T) = U(17y7 ‘L-)

=U(x,0,7) = U(x,a,7) =0 (6)
The boundary layer assumption leads to the conclusion
that the pressure, in the vertical channel, depends
(spatially) only on the axial co-ordinate z, hence the
derivatives 0P/0x and 0P/dy are 0. The hypothesis of
hydrodynamically developed flow implies 0U/0z = 0.
With this in mind, substituting 0 from Eq. (1) into Eq.
(2), the following expression is obtained:
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The existence of a solution to Eq. (7) for U(x,y,t) im-
plies that the dimensionless pressure must satisfy the
system of partial differential equations

o*p o*p

— = F d —=F5 8
x = Fil) and S5 =A(), ®)
where F; and F, are suitable time functions. Integrating
the first of these equations with respect to time and de-
riving the result with respect to z we obtain

oP o’P

% Fi(t) + G(z) and P G'(2), )
where Fi(t) is a general integral of F; and G(z) is a
suitable function depending only on z.

The second equations in (8) and (9) state that
G'(z) = F>(t); this is possible only if /5(z) is a numerical
constant f and P has a parabolic distribution along z.
The dimensionless pressure is then

P:f§+ﬂﬁV+EU% (10)

where the number f'and the functions F; and Fs depend
on the boundary and initial conditions.

Eq. (10) is simply reduced considering that the
channel is open, hence P = 0 at both inlet and exit sec-
tions (z=0 and z = L). Consequently, F5(r) =0 and
Fy(t) = —fL/2; the dimensionless pressure, under the
above mentioned hypotheses, does not depend on time
and it reads as

p:fZZ;L. (11)

Substituting Eq. (11) into Eq. (1) and deriving with re-
spect to z (remembering the hydrodynamically devel-
oped flow) we obtain 00/0z = f/Gr, i.e. the temperature
variation along the channel is constant at any point
(x,») of the rectangular cross-section and 0 varies lin-
early with the axial distance z.

This implies that in a rectangular duct, in transient
laminar natural convection and UWTs, if the flow is
hydrodynamically developed, then it is thermally de-
veloped too, because O(7 —Ty,)/(Ty — T)/0z = 0.
Hence the thermal entry length is never greater than the
hydrodynamic development length, regardless of the
value of the Prandtl number.

A further simplification can be attained if one con-
siders that the temperatures of the four wetted walls are
uniform (UWT boundary conditions). In order to satisfy
this condition, the number f must be zero; consequently
the dimensionless temperature profile depends only on
the transverse co-ordinates x,y and time t. These con-
clusions were already obtained by several authors for
transient laminar flow in annuli or parallel plates, with
UWT conditions [5,9].

The analysis is now simplified and the pressure term
vanishes (P = 0) as well; the fluid pressure in the channel
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is equal to the hydrostatic pressure outside the duct.
Egs. (1) and (2) can now be separated as

1 oU « \>/U U
ﬁé?*“*@?&)(a:+af) (12)
o0 a \2/%0 %0

- () (Gege) 13)

where the energy equation contains only the unknown
function 6, while the momentum equation links the
velocity to the temperature.

Moreover, the initial and boundary conditions for
the temperature profile (depending only on x,y and t)
are:

0(x,»,0) =0, 000,y,7) =0y, 0(1,y,7) =0y,
0(x,0,7) = 03, 0(x,0,1) = 04, (14)

where 0; and 0, are the arbitrary uniform dimensionless
temperatures of the short sides of the wetted perimeter,
03 and 0, are the uniform temperatures of the rec-
tangular cross-section. Three of them are independent,
being 0, = 1, hence a(0; + 0,) + 05 + 04 = 2(1 + «).

Obviously, 0, =0, =0; =0, =1 if the four walls
have the same temperature.

3. Analytical solution

Eq. (13) is solved using the Fourier sine transform [12]
with respect to the two spatial co-ordinates. By multi-
plying every term of the equation by sin(nmx) sin(mmy/o)
and integrating in the whole domain (over [0, 1] along x
and over [0, o] along y) the partial differential equation
(13) is turned into a simple ordinary differential equation
for the transformed temperature, which reads as (with its
initial condition)

dggn(‘[) = 7anémn(r) +Amn7 émn(‘f = 0) =0. (15)
T

The twofold transformed temperature is

O / / 0(x,y, 1) sin nrnx)sm( ;cy) (16)

and the numerical constants are

o= (125 ) {20 - 70— (- 1y

1+o
= (= 1)')00s = (= 1)"0] . (17)
_nzaZnZ_’_mZ
By = Tra (18)

The solution to Eq. (15) is easily obtained as

N Amn — T
() = 2 (1 = &), (19)

Hence, the temperature field in the rectangular channel
is

'

00
n=1 m=1

x sin(nmx) sin <m7ny) (20)

mn (1 _ efB»mf)

xy7

R | &
[+
3
=

This temperature distribution does not depend on the
fluid properties (Pr, Gr). This expression for 0 can be put
in the momentum equation (12), which can be tackled
resorting to both the Fourier sine transform (with re-
spect to the spatial co-ordinates, using the same pro-
cedure described above) and the Laplace transform
(with respect to time). After boring algebraic passages
the velocity distribution is obtained as

00 00 P}" mn
=2 > m 15

n=1 m=1 m

(=l e +67HB'""T
Pr Pr

x sin(nmx) sin <m7ny) (21)

1
+ T) e—anT:|

R | &

Ulx,p,t

If Pr =1, the solution reads as

x.yv izcmn{__(

1

x sin(nmx) sin <m7ny)7 (22)
where the constant C,,, is
Amn
Con = . 23
B (23)

While the temperature distribution depends only on the
aspect ratio, the velocity profile depends on the Prandtl
number too. At any point (x,y) in the channel, the fluid
velocity u increases linearly with the Grashof number, as
stated in the definition of dimensionless velocity U, Eq.
(%5).

It is interesting to point out that, in the steady state
(t — o0) with uniform isothermal walls (0, = 0, = 0; =
0, = 1), the velocity distribution is

M i = 1
m S oot mn(oein? 4+ m?)

x sin(nmx) sin (m775y> . (24)

U(X,y) =

In steady-state, laminar, hydrodynamically developed
flow, the velocity profile of Eq. (24) is formally quite
similar to the forced convection profile [13], even if a
direct comparison can not be proposed since the di-
mensionless velocity in forced convection is obtained
using parameters that are zero in natural convection and
vice versa.
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4. Flow characteristics

The dimensionless induced volumetric flow rate de-
fined as
8F’

F= (25)

avGr

can be estimated integrating the velocity distribution on
the cross-sectional area

F(f):”"‘/o1 /Omdedy‘ (26)

o

When the developing natural convection flow reaches
the steady-state condition (t — o), the volumetric flow
rate reaches its upper value; this asymptotic value does
neither depend on the channel height nor the Prandtl
number, but only on the aspect ratio of the channel. The
flow rate F’ is directly proportional to the Grashof
number, as stated in Eq. (25). The exact expression of
the asymptotic dimensionless flow rate, for UWT, is

3
Fo = limF(7) = M
T—00 TC
oo 0 1
—— - 27
- n:zodd m:%d m2n2(a2n2 + mz) ( )

The asymptotic volumetric flow rates are quoted in
Table 1 as a function of the duct aspect ratio; in UWT
this flow rate increases with the aspect ratio, reaching its
maximum for the square channel.

The dimensionless mixing cup temperature is

1 o
Ob(r)zlo;a/() /0 U0dxdy, (28)

while the dimensionless wall temperature is obviously
0y = 1.

The dimensionless thermal power transferred be-
tween the fluid and the walls is

Table 1
The asymptotic value of the dimensionless volumetric flow rate
as a function of the channel aspect ratio

o Fy

1 0.2812
0.9 0.2665
0.8 0.2504
0.7 0.2328
0.6 0.2136
0.5 0.1930
0.4 0.1711
1/3 0.1560
0.3 0.1485
0.25 0.1371
0.2 0.1259
0.1 0.1039

__ 9
Q(T) - )H(TW _ TO)
! o0 o0
= - — — d
{ /() < ay y=0 ay ya) *
* o0 00
+/0 <_ & x=0 * a x:l) dy} (29)

At any time, the power exchanged does neither depend
on Pr nor Gr. Finally the average Nusselt number
(weighted on the whole heat exchange area) is deter-
mined as

o 0

Nu(t) = m = (30)

Since U and 0 are the functions of x, y, T and o, it fol-
lows that the flow rate, the mixing cup temperature, and
the average Nusselt number are the functions of 7 and o
only (being related to definite integrals in x and y), re-
gardless of the value of the axial co-ordinate. Hence the
duct aspect ratio « becomes the fundamental parameter
in order to establish the unsteady performance of the
channel.

5. Results and discussion

The data related to the analytical solutions have been
processed using double precision arithmetic in Fortran
programming language, in a very short time using a PC
class computer.

To show some examples of the results attained by the
close-form solutions, Egs. (20) and (21) are used to
compute the fully developed transient temperature and
velocity profiles in an isothermal square channel
(0, =0,=0;=0,=1) for an upward laminar flow
(heating). In this case the constants 4,,, are 0 for m or n
even; for m and »n odd they read as

220 2
Am:< 20 > o +m’ (1)
1+ o mna.

In Figs. 1 and 2 the temperature and velocity distribu-
tions are presented for different values of the dimen-
sionless time; the numerical runs to compute velocity
were performed for Pr= 0.7, typical for air flow (the
temperature distribution does not depend on the Prandtl
number), in the middle section y = 0.5.

As time increases, the step variation of the wall
temperature propagates a perturbation in the core fluid,
whose temperature increases until it reaches, for large
values of 1, the steady-state value § = 1 at any given x
and y co-ordinates (Fig. 1). The temperature distribu-
tion depends on t and « only, its minimum always oc-
curs at the centre of the cross-section, its maximum on
the walls.
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Fig. 1. Transient temperature distribution in a square channel,
for y=0.5.

0.18
U LT

0.15 ™~

0.12 / —— \

TN

oo Tl N
/ \

—0-1=0.5
0.03
\\_A—//
0.00 \_ % _/
0.0 0.2 04 x 06 0.8 1.0

Fig. 2. Transient velocity distribution in a square channel, for
y=0.5and Pr=0.7.

The velocity spatial distribution in the square chan-
nel, shown in Fig. 2 for some values of 7, develops with
time until it reaches the steady-state distribution. It is
worthwhile to draw attention to a particular feature: at
short times the velocity distribution has a local mini-
mum in the centre of the cross-section and a pair of
symmetrically placed maxima on either side of it. At
long times the maxima disappear and the peak is
reached at the centre of the rectangular cross-section.
This is more evident for very low values of the Prandtl
number (as usual in liquid metals), where the heat ex-
change is more effective. In fact the occurrence of a
maximum near the hot wall is explained in terms of the
effect of the step variation of the heated walls, which is
felt more sensibly by the fluid near the walls. While the
local maxima do not appear in Fig. 2, because the time

intervals are not sufficiently small, they clearly appear in
Fig. 3, for the same values of 7, where the Prandtl
number is 0.025.

The relative induced volumetric flow rate F; defined
as F/Fy, is quoted in Fig. 4, versus the dimensionless
time 1, for different values of duct aspect ratio o. It is
interesting to note that the relative volumetric flow rate
increases if the aspect ratio diminishes. The asymptotic
value of the volumetric flow rate is reached after a long
time if the Prandtl number is small (this is the case of
liquid metals, for instance). While the asymptotic value
is constant, the time response is very sensitive on the
Prandtl number. This is well explained by the physical
meaning of Pr, related to the ratio between momentum
and heat transport.

0.010
U
o0 /\\ //\
0.006 [\\ —1- //\
0.004 —~—
—1=0.05 =< 1=0.1
™\ —A—1=0.15 <—1=04 e
0.002 o0 1=0.5
0.000 2
0.0 0.2 04 x 0.6 0.8 1.0

Fig. 3. Transient velocity distribution in a square channel, for
y=0.5and Pr=0.025.

100
F, (%)
75
50 f—f— Pr=7 (H,0)
Pr=0.7 (Air) /p_I:() 5 0
25 1l 0.7 (Air
’:: '-" .-t IR ;;’/
0 A é
0 0.4 0.8 ya——

Fig. 4. Transient dimensionless induced flow rate in a rec-
tangular channel, for Pr =7, 0.7 and 0.025.
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1

0,
0.8 | Pr=0.025 (NaK)
0.6 H
04 +— =0.7 (Air)

Pr=7 (H,0)

0.2

0.01 0.1 T 1

Fig. 5. Transient dimensionless mixing cup temperature in a
rectangular channel, for =7, 0.7 and 0.025.

80
Nu
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------ 0=0.25
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40 Pr=0.7 (Air)

~ N\ Pr=0.025 (NaK)
20 /

Pr=7 (H,0) } )
0 w 3.44
0.001 0.01 0.1 T 1

Fig. 6. Transient average Nusselt number in a rectangular
channel, for Pr =7, 0.7 and 0.025.

The mixing cup temperature 0, versus time for dif-
ferent aspect ratios and Prandtl numbers, is shown in
Fig. 5. As expected, the fluids with low Prandtl numbers
present a more rapid increase, even if the asymptotic
value is always O, = 1. In the square channel, greater
values of temperature are experienced in the first part of
the transient evolution, but the asymptotic value is
reached with a time lag (with respect to rectangular
ducts).

At last the average Nusselt number is sketched in
Fig. 6 for different fluids and duct aspect ratio. It pre-
sents higher values for low Prandtl numbers and, for
small times, for the square duct. Like in the analogous T’
boundary condition of forced convection [14], the Nus-
selt number in UWT natural convection reaches an
asymptotic value depending only on the aspect ratio.
This value corresponds to the indeterminate ratio be-
tween the heat flux and the temperature difference
T — Ty; both 0.

6. Conclusions

The paper has analysed the behaviour of a Newto-
nian single-phase fluid in hydrodynamically developed
transient natural laminar convection, in a rectangular
vertical duct, with UWTs. Under these assumptions it is
proved that:

e the flow is necessarily thermally developed, the ther-
mal entry length cannot be greater than the hydrody-
namic entrance length,

e no pressure drop occurs in the channel (the fluid vis-
cous drag is offset by the buoyancy force),

o the dimensionless volumetric flow rate, the mixing
cup temperature and the average Nusselt number
are only time-dependent, they are not related to the
channel height. Their time response depends on the
Prandtl number, while their asymptotic value is con-
stant (for 0y,) or depends only on the channel aspect
ratio (for F and Nu).

The transient 2D velocity, and temperature have
been analytically determined resorting to the Fourier
and Laplace transforms. The transient temperature dis-
tribution depends on the aspect ratio, while the velocity
distribution depends on the Prandtl number too, and
increases linearly with the Grashof number.
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